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Stability Analysis

I A power grid system is generically described by a set of DAEs:

ẋ = f (x , y , µ)

0 = g(x , y , µ)

where x ∈ Rn are the state variables and y ∈ Rm are the
algebraic variables.

I We want to determine the stationary points of the system

0 = f (x0, y0, µ)

0 = g(x0, y0, µ)

I What are their properties: stability, bifurcation analysis, region
of attraction, disturbance analysis, design controllers, etc.
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Example: Voltage Collapse

I A model power system:

V α

G

(P,Q)

1 0

X

I The state variables are x = (α, V ) and the bifurcation
parameters are µ = (P, Q).

I The equations that determine the system equilibria are:

0 = −4V sin(α)− P

0 = −4V 2 + 4V cos(α)− Q

I What are the safety margins for the allowable variations in the
loads?

Reference: Dobson, I., Computing a closest bifurcation instability in multidimensional parameter space, Nonlinear

Science 3, 307-327, 1993.
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Power-Voltage Relationships

I For various load power factors 0 0.5 1 1.5 2 2.5 3 3.5
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there is a maximum deliverable power to the load node.

I For a given load power below the maximum, there are two
solutions to the load flow equations.
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Example: Time domain Stability

I Consider this model:
0v

x’
d

x
L

x
Th

G

e δ

ẋ1 = x2

ẋ2 = 10λ− 20 sin(x1)− x2

I The equilibrium points can be found from the steady-state
(power flow) equations:

0 = x2

0 = 10λ− 20 sin(x10)− x20
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Equilibria

I The solutions are:
[
x10

x20

]
=

[
sin−1(λ/2)

0

]
(1)

I With two equilibrium points (and their periodic images):

x1s = sin−1(λ/2)

x1u = π − sin−1(λ/2)

Reference: Milano, F., Power System Modelling and Scripting, Springer, Heidelberg, in press.
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Stability and Region of Attraction
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Linear Matrix Inequalities

I F ∈ Sn×n is positive semidefinite (denoted F º 0) if
xTFx ≥ 0 for all x ∈ Rn.

I For A, B ∈ Sn×n, write A ≺ B if A− B ≺ 0. Similar notation
holds for ¹,Â, and º.

I Given matrices {Fi}m
i=0 ⊂ Sn×n a Linear Matrix Inequality

(LMI) is a constraint on λ ∈ Rm of the form:

F0 +
m∑

k=1

λkFk º 0 . (2)
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Semidefinite Programming

I A Semidefinite Program (SDP) is an optimization problem
with a linear cost, LMI constraints, and matrix equality
constraints.

I Given matrices {Fk}m
k=1 ⊂ Sn×n and c ∈ Rm, a SDP solves

the following problem:

min
λ∈Rm

cTλ

subject to: F0 +
m∑

k=1

λkFk º 0
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Polynomials

I Given α ∈ Nn, a monomial in n variables is a function
mα : Rn → R defined as mα(x) := xα1

1 xα2
2 · · · xαn

n .

I The degree of a monomial is defined as degmα :=
∑n

i=1 αi .

I A polynomial is a function p : Rn → R defined as:

p :=
∑

α∈A
cαmα =

∑

α∈A
cαxα (3)

I The set of polynomials in n variables {x1, . . . , xn} will be
denoted R[x1, . . . , xn] or, more compactly, Rn.

I Define a subset of Rn as Rn,d := {p ∈ Rn|degp ≤ d}.
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Gram Matrix Representation

I If p ∈ Rn,2d then there exists a Q ∈ S lz×lz such that

p = zT
n,dQzn,d where lz =

(n+d
d

)
and

zn,d := [1, x1, x2, . . . , xn, x
2
1 , x1x2, . . . , x

2
n , . . . , xd

n ]T (4)

I All solutions to p = zT
n,dQzn,d can be expressed as the sum of

a particular solution Q0 and a homogeneous solution.

I There is a set of linearly independent homogeneous solutions
{Qi}h

i=1 each of which satisfies zT
n,dQizn,d = θ.
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Gram Matrix Example

I The polynomial p = 2x4
1 + 2x3

1x2 − x2
1x2

2 + 5x4
2 can be written

as p = zT
2,2Qz2,2 where

z2,2 =




x2
1

x1x2

x2
2


 ,Q0 =




2 1 −0.5
1 0 0

−0.5 0 5


 , Q1 =




0 0 −0.5
0 1 0

−0.5 0 0




I We can define an affine subspace of symmetric matrices
related to p as

Sp = {Q|zT
n,dQzn,d = p(x)} =

{
Q0 +

h∑

i=1

λiQi

∣∣λi ∈ R
}
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Positive Semidefinite Polynomials

I p ∈ Rn is positive semi-definite (PSD) if p(x) ≥ 0∀x .

I The set of PSD polynomials in n variables {x1, . . . , xn} will be
denoted P[x1, . . . , xn] or Pn. Also define Pn,d = Pn

⋂Rn,d .

I Our computational procedures will be based on constructing
polynomials which are PSD.

I Objective: Given p ∈ Rn, we would like a polynomial-time
sufficient condition for testing if p ∈ Pn.
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Sums of Squares Polynomials

I p is a sum of squares (SOS) if there exist polynomials {pi}N
i=1

such that p =
∑N

i=1 p2
i .

I The set of SOS polynomials in n variables {x1, . . . , xn} will be
denoted Σ[x1, . . . , xn] or Σn.

I If p is SOS then p is PSD. In general Σn,d ⊂ Pn,d .

I Theorem: p ∈ Σn,2d iff there exists Q º 0 such that
p = zT

n,dQzn,d .

Reference: Parrilo, P., Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and

Optimization, Caltech, 2000.
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SOS Example

I p = 2x4
1 + 2x3

1x2 − x2
1x2

2 + 5x4
2 is SOS since Q0 + λ1Q1 º 0

for λ1 = 5.

I An SOS decomposition can be constructed from a Cholesky
factorization:

Q + λ1Q1 = LTL

where:

L =
1√
2

[
2 1 −3
0 3 1

]

I Thus
p = (Lz)T (Lz) == 1

2(2x2
1 − 3x2

2 + x1x2)
2 + 1

2(x2
3 + 3x1x2)

2
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Connection to LMIs

Checking if a given polynomial is a SOS can be done by solving a
LMI feasibility problem.

1. Let Q0 be a particular solution of p = zTQz and let {Qi}h
i=1

be a basis for the homegeneous solutions.

2. p is a SOS iff there exists λ ∈ Rh such that
Q0 +

∑h
i=1 λiQi º 0
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SOS programming

I Given c ∈ Rm and polynomials {pk}m
k=0 solve:

min
α∈Rm

cTα

subject to: p0 +
m∑

k=1

αkpk ∈ Σ[x ]

I This SOS programming problem is an SDP:
I The cost is a linear function of α.
I The SOS constrraint can be replaced with a LMI constraint.
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Basic Algebraic Geometry

I Given {g1, . . . , gt} ∈ Rn, the Multiplicative Monoid
generated by gj ’s is

M(g1, . . . , gt) = {gk1
1 gk2

2 . . . gkt
t

∣∣k1, . . . , kt ∈ Z+}

I Given {f1, . . . , fs} ∈ Rn, the Cone generated by fj ’s is

P(f1, . . . , fs) :=
{

s0 +
∑

sibi

∣∣si ∈ Σn, bi ∈M(f1, . . . , fs)
}

I Given {h1, . . . , hu} ∈ Rn, the Ideal generated by hk ’s is

I(h1, . . . , hu) :=
{∑

hkpk

∣∣pk ∈ Rn

}

Marian Anghel Algebraic Methods in Power Grid Control and Optimization
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The Positivstellensatz

Given polynomials {f1, . . . , fs} , {g1, . . . , gt} , and {h1, . . . , hu} in
Rn, the following are equivalent:

1. The set


x ∈ Rn

∣∣∣∣∣∣

f1(x) ≥ 0, . . . , fs(x) ≥ 0
g1(x) 6= 0, . . . , gt(x) 6= 0
h1(x) = 0, . . . , hu(x) = 0



 (5)

is empty.

2. There exist polynomials f ∈ P(f1, . . . , fs), g ∈M(g1, . . . , gt),
and h ∈ I(h1, . . . , hu) such that

f + g2 + h = 0.

Marian Anghel Algebraic Methods in Power Grid Control and Optimization
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Positivstellensatz Certificates

I The LMI based tests for SOS polynomials can be used to
prove that the set emptyness condition from the P-satz holds,
by finding specific f , g and h such that f + g2 + h = 0.

I These f , g and h are known as P-satz certificates since they
certify that the equality holds.

Marian Anghel Algebraic Methods in Power Grid Control and Optimization
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Theorem:

Given polynomials {f1, . . . , fs} , {g1, . . . , gt} , and {h1, . . . , hu} in
Rn, if the set

{x ∈ Rn
∣∣fi (x) ≥ 0, gj(x) 6= 0, hk(x) = 0}

is empty then the search for bounded degree P-satz certificates can
be done using SDP. If the degree bound is chosen large enough the
SDP will be feasible and give the refutation certificates.

Marian Anghel Algebraic Methods in Power Grid Control and Optimization
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Robust Bifurcation Analysis

I In power systems voltage collapse has its origin in a
saddle-node bifurcation.

I There are few systematic approaches to the problem of
computing bifurcation margins.

I These methods only compute the locally closest bifurcations
to a given set of nominal parameters.

I We need more powerful methods guaranteeing a minimum
distance to a singularity.
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I The condition for a vector field f (x , µ) to have a saddle-node
bifurcation at (x0, µ0) are:

f = 0 w∗Dµf 6= 0

w∗Dx f = 0 w∗D2
x f (v , v) 6= 0

I In the polynomial case, the set where bifurcation occur is
semialgebraic, since it can be described in the form described
by the P-satz Theorem.

I If the problem contains nonalgebraic elements, it might be
possbile to convert a non-polynomial system into a ational
system.

Reference: Parrilo, P., Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and

Optimization, Caltech, 2000.
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I The system operates at
(P0, Q0, α0, V0) = (0.5, 0.3,−0.13, 0.90)

I Define x := sin(α) and y = cos(α).

I We want to minimize the function:

J(P, Q) = (P − 0.5)2 + (Q − 0.3)3

subject to the conditions:

f 1 := x2 + y2 − 1 = 0

f 2 := −4Vx − P = 0

f 3 := −4V 2 + 4Vy − Q = 0

f 4 := detJ = −16V (x2 + y2 − 2Vy) = 0

Marian Anghel Algebraic Methods in Power Grid Control and Optimization



Power Grid Motivation
Basic Polynomial and Algebraic Background

Methods for Computing the Closest Saddle Node Bifurcation
Methods for Computing the Lyapunov Stability

Methods for Computing the Region of Attraction

I Consider the problem of veryfing the implication

{f1(x) = 0, f2(x) = 0, f3(x) = 0, f4(x) = 0} ⇒ b(x) ≥ 0

I The implication is true iff the following set is empty:

{x∣∣f1(x) = 0, f2(x) = 0, f3(x) = 0, f4(x) = 0,−b(x) ≥ 0, b(x) 6= 0}

I By the P-satz theorem this is true iff there exists polynomials
s1, s2 ∈ Σ4 and p1, . . . , p4 ∈ R4 such that:

s1 − s2b +
4∑

i=1

pi fi + b2k = 0

Marian Anghel Algebraic Methods in Power Grid Control and Optimization
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←  P2 + 4Q−4
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−0.5

0
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1.5

2

s1 − s2b +
4∑

i=1

pi fi + b2k = 0

I Take s1(x) = 0, k = 1,
and pi (x) = b(x)ri (x), i = 1, . . . , 4,
in which case:

b(x) +
4∑

i=1

ri fi ∈ Σn

I Take
b(x) = J(P ,Q)− γ and maximize over γ!
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Dynamic Stability Framework

I Assume an autonomous nonlinear system of the form

ż = f (z , µ) , (6)

where z ∈ Rn and for which we assume f (0, µ) = 0.

I We want to assess the stability of its equlibrium fixed points
and to estimate their region of attraction.

I Idea: Cast the Lyapunov stability arguments into SOS
programming problems.

I Design controllers, perform disturbance analysis, etc.
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Local Lyapunov Stability

Theorem For an open set D ⊂ Rn with 0 ∈ D, suppose there
exists a continuously differentiable function V : D → R such that

V (0) = 0 ,

V (z) > 0 ∀z ∈ D ,

∂V

∂z
f (z) ≤ 0 ∀z ∈ D .

Then z = 0 is a stable equilibrium point of (6). Moreover, any
region Ωβ := {x ∈ Rn

∣∣V (x) ≤ β} such that Ωβ ⊆ D describes an
positively invariant region contained in the equilibrium point’s
domain of attraction.

Marian Anghel Algebraic Methods in Power Grid Control and Optimization
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SOS relaxation

I Suppose that for the system (6) there exists a polynomial
function V (z) such that

V (0) = 0 ,

V (z)− φ(z) ∈ Σn ,

− ∂V

∂z
f (z) ∈ Σn

where φ(z) > 0 for z 6= 0. Then the zero equilibrium of (6) is
stable.

I Choose φ(z) =
∑n

i=1 εiz
2
i , where

∑
εi > γ with γ a positive

number and εi ≥ 0.

Reference: Papachristodoulou, A. and Prajna, S., Analysis of Non-polynomial systems Using the Sum of Squares

Decomposition, Positive Polynomials in Control, pp. 23-43, 2005.
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Recasting Methodology for Non-polynomial vector fields

I Consider again the one-machine infinite-bus system:

ẋ1 = x2

ẋ2 = 10λ(1− cos(x1))− 20 cos(x1s) sin(x1)− x2

I Define x3 = sin(x1) and x4 = 1− cos(x1).

ẋ1 = x2 (7)

ẋ2 = 10λx4 − 20 cos(x1s)x3 − x2 (8)

ẋ3 = (1− x4)x2 (9)

ẋ4 = x3x2 (10)

and introduce an equality constraint x2
3 + (1− x4)

2 = 1 .

Marian Anghel Algebraic Methods in Power Grid Control and Optimization
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I Generally, for a non-polynomial system ż = f (z , µ) the
recasted system is written as:

˙̃x1 = f1(x̃1, x̃2) ,

˙̃x2 = f2(x̃1, x̃2) ,

where x̃1 = (x1, . . . , xn) = z are the original state variables,
x̃2 = (xn+1, . . . , xn+m) are the new variables.

I The constraints arising directly from the recasting process are

x̃2 = F (x̃1)

and those arising indirectly

G1(x̃1, x̃2) = 0 ,

G2(x̃1, x̃2) ≥ 0 .

Marian Anghel Algebraic Methods in Power Grid Control and Optimization
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Extension of Lyapunov Stability Theorem

I Let D1 ⊂ Rn and D1 ⊂ Rn be open sets such that 0 ∈ D1 and
F (D1) ⊆ D2.

I Assume that D1 ×D2 is a semialgebraic set defined by the
following inequalities:

D1 ×D2 = {(x̃1, x̃2) ∈ Rn × Rm : GD(x̃1, x̃2) ≥ 0} .

Reference: Papachristodoulou, A. and Prajna, S., Analysis of Non-polynomial systems Using the Sum of Squares

Decomposition, Positive Polynomials in Control, pp. 23-43, 2005.
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Proposition

Suppose that for the system (7) and the functions F (x̃1),
G1(x̃1, x̃2), G2(x̃1, x̃2), and GD(x̃1, x̃2) there exists polynomial
functions λ1,2(x̃1, x̃2), and SOS polynomials σi (x̃1, x̃2), such that

V (0, x̃2,0) = 0 ,

V − λT
1 G1 − σT

1 G2 − σT
2 GD − φ ∈ Σn ,

−
(

∂V

∂x̃1
f1 +

∂V

∂x̃2
f2

)
− λT

2 G1 − σT
3 G2 − σT

4 GD ∈ Σn ,

where φ(x̃1, F (x̃2) > 0 for ∀x̃1 ∈ D1 \ 0, then z = 0 is a stable
equilibrium of (6).
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Example: one-machine infinite-bus system

I Define an equality constraint: G1 := x2
3 + x2

4 − 2x4.

I Define D1 ×D2 as:

GD(1) = β2 − (x2
1 + x2

2 ) ≥ 0

GD(2) = (x3 − sin(β))(x3 + sin(β)) ≥ 0

I Define φ(x̃1, x̃2) =
∑4

i=1 εix
2
i with εi ≥ 0.

Thank you Antonis!
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I Solve the following optimization problem:

max
ε,λ∈R4,σ∈Σ4

β

subject to: V − λ1G1 − σ1GD(1)− σ1GD(1)− φ º 0

− dV

dt
− λ2G1 − σ3GD(1)− σ4GD(1) º 0

I We find for β = 1.5

V = 0.0020275x2
1−0.0042255x1 sin(x1)−0.04157x1(1−cos(x1))

− 0.0001238x1 + 0.014573x2
2 + 0.0029823x2 sin(x1)

− 0.00034485x2(1− cos(x1)) + 0.20613 sin(x1)
2

+ 0.016014 sin(x1)(1− cos(x1)) + 0.2033(1− cos(x1))
2

+ 0.17784(1− cos(x1))
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